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Abstract—Integral transforms of derivatives of functions appearing in the equations for
deflections of sandwich plates are presented in terms of transforms of those functions and of
appropriate boundary values. The use of the generalized Green’s formula enables us to present
these transforms in an invariant form. A rectangular plate is analyzed as an example.

NOTATION

The notation which is used in this paper is partially adopted from Wempner and Baylor[1]. Greek suffixes
take the values 1 and 2. A semi-colon (;) is used to denote covariant differentiation while a comma (,)
denotes partial differentiation. Prefixes (1) are used to distinguish between the upper (n = 0) or lower (n=1)

facings.
a,b dimensions of a rectangular plate
c* = oA op® — A p*
d thickness of the core
nd thickness of a facing
ew, fuy constants
o eigenvalues (i = 1, 2, 3)
P the vertical component of the external force
D% the ““in-plane” components of the external forces
1
P oP v 1P
s* components of the transverse shear resultants
w vertical displacement of the plate
4 LGN 11—
Yo ToN
B = (1 —n)/2C.C,L
Cy =2A o/\ 0[.L'y/G(l + ’}’)
C; = oA OleL(O/\Z + }’1/\2)/6(1 _"’])
G transverse shear modulus of an isotropic core
L a characteristic length of the middle surface
P = LI[p* + )P, — 2C1(p35 + 3P 30/ — )
+ AypPl(1 + )]
Y =,A 1}1-/0/\ ofb
7 Poisson’s ratios of both facings
A =dJ2L
”\ = d/L
nfl shear modulus of a facing
0 Orthogonal system of eigenfunctions
62 dimensionless surface coordinates.
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INTRODUCTION

Recently, Wempner and Baylor[1] derived equations for the deflection of sandwich
plates with von Kdrman type of geometric nonlinearities. When the contraction of the core
was neglected, isotropy was assumed, and the nonlinear terms were disregarded, a system of
three partial differential equations resulted. It is well known that such a system of equations
is well suited for application of some type of integral transform. It is equally well known that
the simplicity of application of integral transforms usually is disturbed by a cumbersome
procedure of integration by parts. In addition, once one attempts to solve the same problem
for an area of different shape, the whole procedure must be repeated because, in general, a
different kernel of transformation must be used. In another paper[2] this author showed how
to avoid this difficulty in the case of the Helmholtz’s equation and in the case of the equ-
ation describing the bending of a homogeneous plate. In both cases, Green’s theorem served
as a tool to achieve a unifying goal. In the present paper this concept is generalized to
include a system of equations from[1] (one scalar equation of order six and one vector
equation). The use of generalized Green’s theorem(3] is applicable in this case since vector
equations are involved. An application to a rectangular plate illustrates the procedure
developed herein.

INTEGRAL TRANSFORMS OF EQUATIONS FOR DEFLECTION
Consider equations (39) and (40) from paper[1]

waby — AwSs + BP =0, )
1 P 2L
¢ - sz e T st) = oe (L - 25w, @
1—n oot 1—n

These equations describe the infinitesimal deformation of an isotropic, sandwich plate
with dissimilar facings and a weak, incompressible core. We shall eliminate the derivatives
of the unknown functions w and s* (8 = 1, 2) which appear in (1) and (2) by using integral
transformations with appropriate kernels.

Assume that the plate covers an area S with a boundary I'. Let ¢;(8) be orthogonal
eigenfunctions corresponding to the following boundary value problems

Dy + (k(i))2¢(i) =0in S 3

eiyPiy +fiyday,.n*=00onT 4
(no summation with respect to i)

where e(;), f(;, are constants and n is the outward normal to I'. Using the generalized Green’s
theorem|[3],

js F,dS = jr Fn, dT (5)

where F is an arbitrary tensor field, the equation (A2) (see the Appendix) is easily derived.

Multiply the scalar equation (1) by the orthogonal functions ¢3, and integrate the result
over S. In order to present the transforms of the derivatives of w in terms of the transform
W,., Of w, we define

Won = | W3, dS. (©)
N
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The boundary condition (4) and the transform (6) have been substituted into formula (A2)
resulting inf

fs W;iﬁ ¢(3) ds = (k(3))4wmn + J’r{(k(_”)z[(f(3)/e(3))w;“na + w]
- [(f(a)/e(s))w;zﬁ”ﬂ + willd sy, dT, Q)
J-s w;ﬁi ¢ dS = — (k(3))6wmn + fr{—‘(k(s))“[(f(a)/e(s))w;a”a + w]

+ (k) [(fisy/eaw.dng + wihl
— (fa)lea)wasn, — wallde)’n, dT ®)

when e, # 0.
When (3, = 0 the following relations are valid

[ wihbe d5 = (a)wm = [ (k)" = wfnede oT, ©
fs Wil b3y AS = —(k3)) W + fr ((ka)*w — (k) w5+ wiltln, ¢y dT. (10)

In order to eliminate the quantity w;;‘gy(l“ ) which does not have a direct physical meaning,
the equation (40) from paper[1]

i
CZ W;Zﬁ _P3 - '27: Sa;a - %ca;a =0 (11)

is taken into account. For the same reason, the term w2’ is eliminated by assuming f{3, = 0.
Hence ¢ 3, must satisfy the boundary condition ¢3,(I') = 0. The transformed equation (1)
now takes the form

(k) [k )? + AW + BPpy = (k) + A1 [ (k)W = ]

1 l, .
by T+ - [ (375% + 36 +2) B Pmpdl (1)

where
P, = f P, dS. (13)
S

Equations (2) are transformed by multiplying them by the scalar function ¢;, (i = 1 or 2)
and integrating over S. Denoting by

Stymn = fs sP ¢y dS a4)

t Note, that both ¢, and ks, depend on an infinite sequence of indices (m, n say) which have been
omitted here for brevity.
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the Fourier transforms of s#, and using expressions (A3), (A4), and (A5) the following
transformed equations are obtained

I +7
stomll + Colk)'1 = 7, €1 [ "Bk dS

2GC11L
1—

(k) j Wi 45 = Gy [ [95" = bio*s'In AT

1+
+Ciy i

f [d’n‘)sa;a nf — (»b(i);ﬁ s*n,] dT
r

2GC, AL

1 . Ba
l IR " Jr [¢(z)w;

L 26CIL
1—

(k(l))zf W(b(i)nB dr" -

GC,y
— ¢y wrin, dI + 5y dS. 15
by’ oioﬂf by (15)

Since w is known from (12) the main difficulty consists in investigation of the second integral
on the left hand side of equation (15). This integral may be represented as a linear finite
function of the transforms (14) only if ¢ ;) are orthogonal to their derivatives ¢;.5. Other-
wise, the transformed equation (15) will have a form of an infinite system of linear algebraic
equations. Since the orthogonality mentioned above takes place only in very few special
cases a different procedure will be developed to transform equation (2).

ALTERNATIVE TRANSFORMATION OF EQUATIONS (2)

Covariant differentiation of equations (2) with respect to 6” and subsequent contraction
leads to
p*, 2L
sﬂ;ﬁ _ ﬁ sﬂ;:ﬂ = GC, (p__”_ -

Wi (16)
ool 1 - ﬁ)

Let s, be the integral transform of s* ; with regard to a system of orthogonal functions ¢
satisfying equations (3) and (4), viz.

Son ;j st ¢ dS (17)
s
The inverse transform of (17) is then
Sﬁ;ﬂ = Z smn¢/“¢”2 (18)

where ¢, and its eigenvalues k, depend on the summation indices m, n
Multiplying (16) by ¢ and integrating over .S leads to the following expression for s,,,
PPy 2iL

1—17+2C1(k) ( )
o = GG, 2 wa)g ds
-7 s\okop L—n

c
——_‘—n fr (P53 — P 5, dT. (19)
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Substituting (19) and (18) into equations (2) one obtains

- Cyshe=FP (20)
where
pP 2AL
FP = GCl( P _ 2 w;:‘,”)Cl(l + 1)
odot 1—n
1 5y 2iL y)
L S w2 a)gds
x {;n 1 =5+ 2C,(k)? [GCI J‘s (010# -7 Wiay) @
2c
7ot [ 60 = 5,70 mar | 1g12) 2. @1
—RBJr ;

Equations (20) can be now transformed in the same manner as equations (2) were in the
previous section. Multiplying equation (20) by ¢;), integrating over S, and applying the
generalized Green’s theorem yields

tomall + Culkp)"] = C1 [ [85%* = b0l AT + | Fi dS. (22)

In this way the inconvenient integral from equation (15) has been removed. It should
be mentioned, however, that a new difficulty appears here: it is now necessary to differentiate
an infinite series in equation (21).

EXAMPLE: RECTANGULAR PLATE
A rectangular plate @ x b will be investigated as the simplest possible case.
Assume:
¢1y = cos(mnb")sin(nnabd?/b),
¢ 2) = sin(mnb*)cos(nnab?/b),
b3y = sin(mnb")sin(nrabd?/b), (23)

where 0 < 6" <1, 0 < 6% < b/a. Let the characteristic dimension L be equal to a.
The eigenvalues corresponding to ¢;, are

(ky)? = n¥(m? + n*a*/b?) = k,,,° (i=123). 24)
Denoting
1 (Z
001, 02) = (o + A” + 0= wD 4 - [t it pd) @9
2

and utilizing (23) one can represent equation (12) in the following form
! nna
— Koy ks + AWy + PB,,, = f [(— D"Q(6*, bja) — Q6 O)] > sin(mn6') d9*
0

+ f:/a [(- 1"Q(1, 62) — Q(, 02)]m7t sin(n—zg 92)d92, (26)
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where
1 _bja
W =a? [ [ Wb, dO* do. @n
0 Yo
Assuming
1  bja
s = a? ! dat de?,
me J.O J-O s QS“)
1 . bja
52, =a? j f sy, A" d6?, (28)
¢ Y0

one can represent the left hand sides of equations (15) in the following forms

2G6C,Ja

(1 Cok®)5 ot 1] Cmt s’y 4 D5 ] = 2L b0y = Dy (29)

and

(14 Cobg 15"+ T Cone(afE)ms’y + a5 ]

2
- 1GC1’AI:a kmnznn(ar/b)wmn = DZmn (30)

These results were obtained by assuming /=1 when f =1, and i = 2 when § = 2.
The following abbreviations have been introduced here

bja
Dims =Gy [ =170, 6%) = X0, 03psin 2 ) a6*
0
nna

——le [(—D"X,(8', bja) — X,(68", O)]cos(mnd") dO!

. 56 ,
t fj B, d6* d6? @31)

Dim=C; | (=17 Xa0', bja) — X(0", O)bsin(mnd?) do!
0

b/a
- maC, f [(= 1" X, (1, 6%) — X,(0, 92)]cos("bi“ 01)d92

GC1

P¢‘(2) do* de? 32)

where

+1 2Gla
1T n(s‘.l s 2) +T"_ o™ W = W11,

X009 =5,

2Gla
X,(0',6%) =5 — -y Wi,



Integral transforms of differential equations for deflections of isotropic sandwich plates 291

1+ 2Gla
X308, 02) = 525 + (5" 1+ 52,) + o (kW — W11,
) 1 _ ’1 3 l — ’1
2G1
X, (0", 0%) = 52 — : W,

Solving the system of algebraic equations (29) and (30) the following expressions for the
Fourier transforms s',,,, and s2,,, are obtained:

1
slmn = A_ {(1 + Clkmnz)[(l - rI)Dlmn + 2Gclzam7rkmn2wmn]

mn

+ (1 + n)Cinn*(a/b)[nDymafb) — mDypl}, (34)

1
Szmn = A {(1 + Clkmnz)[(l - r’)DZmn + 2G(:lJ':ann:(a/b)kmnzwmn]

mn

+ (1 + MCyma®[m Dy, — nDy,il(a/b)B, (35)
where w,, is the solution of the algebraic equation (26), and
Amn =1~ n+ (3 - r’)Clkmnz + 2C12kmn4* (36)

Once the Fourier transforms wy,, ', $2., are known the functions w, s', and s? are
obtained from the inversion formulae:

4 = 0
M= a——b mz=:1 nzl W ¢(3),
4 = )
s -aZmZO n=1 (1 - %5OM)S mn¢(1)’
4 0 0
= '—b Z ZO (1 - % 60n)s2mn ¢(2)’ (37)

where d¢,,, 8., is Kronecker’s delta.

Notice that in general the expressions for Fournier transforms depend on the integrals
of the boundary values of the unknown functions and/or their derivatives. These integrals
vanish in special cases only. Otherwise it is necessary to use available boundary conditions—
and this requires differentiation of Fourier series—to eliminate these unknown quantities.
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the Mechanical Engineering Department of the University of Connecticut.
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APPENDIX
The generalized Green’s theorem

fs F,dS= fr Fn dr (A1)
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can be used to generate several useful transformation formulae. Assuming, for instance,
F=¢¥"— ¢ ¥ where ¢ and ¥ are scalar fields one gets the well known formula

[[@¥—sw)ds= | @¥7—g1¥mar. (A2)
Similarly, F = ¢u’* — ¢ "uf yields
[[@wz— ¢ ds = [ (¢~ ¢ 2ubm, dT (A3)

where ¢ is a scalar and u a vector.
If F = ¢u® 4, the expression

fs Diipe dS = - fs i’y dS + .[r ¢u’ yn, dU

results. In order to transform the first integral on the right hand side the substitution
F = ¢ 4uis used in (Al) resulting in

Lt dS=— [ ¢udS+ [ ¢ ,umm,dl
qu,ﬂu ; J.Sqﬁ,ﬂ u fr ¢.pu'n
so that
f dub,, dS = j W', .5 dS + f [pu 31, + ¢, uPny] dT. (Ad)
S S r
If F = ¢¥ one obtains

js(p;,\y ds = — fs ¥, dS + fr ¢¥n, dr. (A5)

A6cTpakT—JaroTca MHTerpajibHble IpeoOpa30BaHus IPOM3BOAHLIX (GYHKIMHN, NOABIAIOMIMX-
CA B ypaBHEHHAX U3ruGa MHOTOCIONHBIX IUIACTHH, B BUIE NMpeoOpa3oBaknit 3TUX GyHKIMA H
COOTBETCTBYIOLIMX IpaHMYHBIX 3HaveHmit. [Ipumenenue 06061menHoR dopmMysl. I'puna maet
BO3MOXHOCTE NPEeICTABMTEL 3TH Npeobpa3oBaHKs B MHBapHaHTHOH dopme. B kadecTse IpH-
Mepa, IPHBOJUTCH PacyeT MPAMOYTONBHOM MJIACTHHKH.



